3 research outputs found

    Plant-wide interoperability and decoupled, data-driven process control with message bus communication

    Get PDF
    Conventional industrial communication systems suffer from rigidness, inflexibility and lack of scalability. The environment is heterogeneous as the systems exchange data with a variety communication protocols, some of which are proprietary. This makes it laborious and expensive to reconfigure or upgrade the systems. As the solution, this article proposes a message-bus-based communication architecture to enable information exchange between systems regardless of their geographical location and position within the functional hierarchy of the plant. The architecture not only enables communication to cross the conventional physical borders but also provides scalability to growing data volumes and network sizes. As proofs of concept, the article presents a prototype in three environments: a copper smelter, a steel plant and a distillation column. The results suggest that the message-bus-based approach has potential to renew industrial communications, a core part of the fourth industrial revolution.H2020, 723661, COCO

    Plant-wide interoperability and decoupled, data-driven process control with message bus communication

    Get PDF
    Conventional industrial communication systems suffer from rigidness, inflexibility and lack of scalability. The environment is heterogeneous as the systems exchange data with a variety communication protocols, some of which are proprietary. This makes it laborious and expensive to reconfigure or upgrade the systems. As the solution, this article proposes a message-bus-based communication architecture to enable information exchange between systems regardless of their geographical location and position within the functional hierarchy of the plant. The architecture not only enables communication to cross the conventional physical borders but also provides scalability to growing data volumes and network sizes. As proofs of concept, the article presents a prototype in three environments: a copper smelter, a steel plant and a distillation column. The results suggest that the message-bus-based approach has potential to renew industrial communications, a core part of the fourth industrial revolution.publishedVersionPeer reviewe

    The impact of the art-ICA control technology on the performance, energy consumption and greenhouse gas emissions of full-scale wastewater treatment plants

    No full text
    Advanced real time – Instrumentation, Control, and Automation (Art-ICA) controllers are an advanced control solution for biological nutrient removal wastewater treatment plants. Art-ICA has been previously shown to be capable of enhancing nutrient removal performance in BNR plants, at lower energy expenditures. However, the impact that this control solution has on the greenhouse gas emissions from full-scale wastewater treatment plants has not previously been addressed. This work addresses the effect of art-ICA on the performance, energy consumption and greenhouse gas emissions of two full-scale WWTPs, Chelas and Castelo Branco (Portugal). The raw wastewater, nitrous oxide emissions, energy consumption and water discharges were quantified in two independent trains operated under different operational modes, conventional operation and art-ICA control. The implementation of the art-ICA strategy improved the effluent quality and reduced the operational costs, resulting in a better performance of these WWTPs. The art-ICA controllers activation led to a reduction of 54% and 7–10% of the total nitrogen effluent and in the specific energy consumption, respectively. Moreover, process control with art-ICA did not have a negative impact on the NO emissions of the plants, and contributed to lower global warming potential by the facilities. The lower indirect carbon dioxide production due to lower energy consumption contributes to the observation that art-ICA control is environmentally preferable to conventional control
    corecore